A  database of New Zealand snow and ice literature is available at

A database of Antarctic literature is available at

Articles about New Zealand Snow and Ice and/or by members of the NZ Snow and Ice Research Group from the last 3 years are found below.


Anderson, J.T.H., Wilson, G.S., Fink, D., Lilly, K., Levy, R.H., Townsend, D., 2017. Reconciling marine and terrestrial evidence for post LGM ice sheet retreat in southern McMurdo Sound, Antarctica. Quaternary Science Reviews 157, 1–13. doi:10.1016/j.quascirev.2016.12.007

Appleby, J.R., Brook, M.S., Horton, T.W., Fuller, I.C., Holt, K.A., Quincey, D.J., 2017. Stable isotope (δD–δ18O) relationships of ice facies and glaciological structures within the mid-latitude maritime Fox Glacier, New Zealand. Annals of Glaciology 1–11. doi:10.1017/aog.2017.11

Borsellino, R., Shulmeister, J., Winkler, S., 2017. Glacial geomorphology of the Barbizon & Butler Downs, Rangitata Valley, South Island, New Zealand. Journal of Maps 13, 502–510. doi:10.1080/17445647.2017.1336122

Brook, M., Hagg, W., Winkler, S., n.d. Contrasting medial moraine development at adjacent temperate, maritime glaciers: Fox and Franz Josef Glaciers, South Westland, New Zealand. Geomorphology. doi:10.1016/j.geomorph.2017.04.015

Cullen, N.J., Anderson, B., Sirguey, P., Stumm, D., Mackintosh, A., Conway, J.P., Horgan, H.J., Dadic, R., Fitzsimons, S.J., Lorrey, A., 2017. An 11-year record of mass balance of Brewster Glacier, New Zealand, determined using a geostatistical approach. Journal of Glaciology 63, 199–217. doi:10.1017/jog.2016.128

Davies, T.R.H., 2017. Mountain Process Geomorphology: Conceptual Progress in the Southern Alps, in: Shulmeister, J. (Ed.), Landscape and Quaternary Environmental Change in New Zealand, Atlantis Advances in Quaternary Science. Atlantis Press, pp. 205–233.

Doughty, A.M., Mackintosh, A.N., Anderson, B.M., Dadic, R., Putnam, A.E., Barrell, D.J.A., Denton, G.H., Chinn, T.J.H., Schaefer, J.M., 2017. An exercise in glacier length modeling: Interannual climatic variability alone cannot explain Holocene glacier fluctuations in New Zealand. Earth and Planetary Science Letters 470, 48–53. doi:10.1016/j.epsl.2017.04.032

Farinotti, D., Brinkerhoff, D.J., Clarke, G.K.C., Fürst, J.J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P.W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T.J., Sanchez, O., Stentoft, P.A., Singh Kumari, S., van Pelt, W.J.J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J.A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G.H., Li, H., Andreassen, L.M., 2017. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere 11, 949–970. doi:10.5194/tc-11-949-2017

Koffman, T.N.B., Schaefer, J.M., Putnam, A.E., Denton, G.H., Barrell, D.J.A., Rowan, A.V., Finkel, R.C., Rood, D.H., Schwartz, R., Plummer, M.A., Brocklehurst, S.H., 2017. A beryllium-10 chronology of late-glacial moraines in the upper Rakaia valley, Southern Alps, New Zealand supports Southern-Hemisphere warming during the Younger Dryas. Quaternary Science Reviews 170, 14–25. doi:10.1016/j.quascirev.2017.06.012

Mackintosh, A.N., Anderson, B.M., Pierrehumbert, R.T., 2017. Reconstructing Climate from Glaciers. Annual Review of Earth and Planetary Sciences 45, null. doi:10.1146/annurev-earth-063016-020643

Mackintosh, A.N., Anderson, B.M., Lorrey, A.M., Renwick, J.A., Frei, P., Dean, S.M., 2017. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications 8, ncomms14202. doi:10.1038/ncomms14202

Rabatel, A., Sirguey, P., Drolon, V., Maisongrande, P., Arnaud, Y., Berthier, E., Davaze, L., Dedieu, J.-P., Dumont, M., 2017. Annual and Seasonal Glacier-Wide Surface Mass Balance Quantified from Changes in Glacier Surface State: A Review on Existing Methods Using Optical Satellite Imagery. Remote Sensing 9, 507. doi:10.3390/rs9050507

Shulmeister, J., 2017. Blowing on the West Wind. The Most Recent Quaternary Glaciation of New Zealand, in: Shulmeister, J. (Ed.), Landscape and Quaternary Environmental Change in New Zealand, Atlantis Advances in Quaternary Science. Atlantis Press, pp. 171–204.

Shulmeister, J., Davies, T.R.H., Bostock, H., Purdie, H., Nicol, A., Shane, P.A., McGlone, M., 2017. Adrift in the Anthropocene, in: Shulmeister, J. (Ed.), Landscape and Quaternary Environmental Change in New Zealand, Atlantis Advances in Quaternary Science. Atlantis Press, pp. 313–334.

Stewart, E.J., Welling, J.T., Espiner, S., Wilson, J., 2017. Comparing motives of glacier tourists to Westland Tai Poutini National Park, New Zealand and Vatnajokull National Park, Iceland. CAUTHE 2017: Time For Big Ideas? Re-thinking The Field For Tomorrow 592.


Anderson, B., Kerr, T., Milner, A., 2016. Alpine processes, in: Jellyman, P.G., Davie, T.J.A., Pearson, C.P., Harding, J.S. (Eds.), Advances in New Zealand Freshwater Science. New Zealand Hydrological Socierty, New Zealand Freshwater Science Society, Christchurch, pp. 73–98.

Bagshaw, E.A., Wadham, J.L., Tranter, M., Perkins, R., Morgan, A., Williamson, C.J., Fountain, A.G., Fitzsimons, S., Dubnick, A., 2016. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiology Ecology fiw076. doi:10.1093/femsec/fiw076

Conway, C.E., Leonard, G.S., Townsend, D.B., Calvert, A.T., Wilson, C.J.N., Gamble, J.A., Eaves, S.R., n.d. A high-resolution 40Ar/39Ar lava chronology and edifice construction history for Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2016.07.006

Conway, J.P., Cullen, N.J., 2016. Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand. The Cryosphere 10, 313–328. doi:10.5194/tc-10-313-2016

Eaves, S.R., Anderson, B.M., Mackintosh, A.N., 2016. Glacier-based climate reconstructions for the last glacial–interglacial transition: Arthur’s Pass, New Zealand (43°S). J. Quaternary Sci. n/a-n/a. doi:10.1002/jqs.2904

Eaves, S.R., N. Mackintosh, A., Winckler, G., Schaefer, J.M., Alloway, B.V., Townsend, D.B., 2016. A cosmogenic 3He chronology of late Quaternary glacier fluctuations in North Island, New Zealand (39°S). Quaternary Science Reviews 132, 40–56. doi:10.1016/j.quascirev.2015.11.004

Hulbe, C.L., Klinger, M., Masterson, M., Catania, G., Cruikshank, K., Bugni, A., 2016. Tidal bending and strand cracks at the Kamb Ice Stream grounding line, West Antarctica. Journal of Glaciology FirstView, 1–9. doi:10.1017/jog.2016.74

James, W.H.M., 2016. A Landform Based 3D Reconstruction of Glacier Ice at the Last Glacial Maximum in the Southern Alps, New Zealand (phd). University of Leeds.

Purdie, H., Bealing, P., Tidey, E., Gomez, C., Harrison, J., 2016. Bathymetric evolution of Tasman Glacier terminal lake, New Zealand, as determined by remote surveying techniques. Global and Planetary Change 147, 1–11. doi:10.1016/j.gloplacha.2016.10.010

Pauling, A.G., Bitz, C.M., Smith, I.J., Langhorne, P.J., 2016. The Response of the Southern Ocean and Antarctic Sea Ice to Fresh Water from Ice Shelves in an Earth System Model. J. Climate. doi:10.1175/JCLI-D-15-0501.1

Sattler, K., Anderson, B., Mackintosh, A., Norton, K., de Róiste, M., 2016. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites. Front. Earth Sci. 4, 4. doi:10.3389/feart.2016.00004

Stewart, E.J., Wilson, J., Espiner, S., Purdie, H., Lemieux, C., Dawson, J., 2016. Implications of climate change for glacier tourism. Tourism Geographies 0, 1–22. doi:10.1080/14616688.2016.1198416


Anderson,Jacob T.H., 2015. Late Quaternary ice sheet thinning and retreat in southern Victoria Land, Antarctica (M.Sc. thesis). University of Otago, Dunedin.

Bravo, C., Rojas, M., Anderson, B.M., Mackintosh, A.N., Sagredo, E., Moreno, P.I., 2015. Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes. Clim. Past 11, 1575–1586. doi:10.5194/cp-11-1575-2015

Cullen, N.J., Conway, J.P., 2015. A 22 month record of surface meteorology and energy balance from the ablation zone of Brewster Glacier, New Zealand. Journal of Glaciology. doi:10.3189/2015JoG15J004

Conway, J.., Cullen, N.., Spronken-Smith, R.., Fitzsimons, S.., 2015. All-sky radiation over a glacier surface in the Southern Alps of New Zealand, characterizing cloud effects on incoming shortwave, longwave and net radiation. International Journal of Climatology 35, 699–713. doi:10.1002/joc.4014

Dadic, R., Schneebeli, M., Bertler, N., Schwikowski, M., Matzl, M., 2015. Extreme snow metamorphism in the Allan Hills, Antarctica, as an analogue for glacial conditions with implications for stable isotope composition. Journal of Glaciology. doi:10.3189/2015JoG15J027

Golledge, N.R., Kowalewski, D.E., Naish, T.R., Levy, R.H., Fogwill, C.J., Gasson, E.G.W., 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425. doi:10.1038/nature15706

Dunning, S.A., Rosser, N.J., McColl, S.T., Reznichenko, N.V., 2015. Rapid sequestration of rock avalanche deposits within glaciers. Nat Commun 6. doi:10.1038/ncomms8964

Haritashya, U.K., Pleasants, M.S., Copland, L., 2015. Assessment of the Evolution in Velocity of Two Debris-Covered Valley Glaciers in Nepal and New Zealand. Geografiska Annaler: Series A, Physical Geography n/a–n/a. doi:10.1111/geoa.12112

Horgan, H.J., Anderson, B., Alley, R.B., Chamberlain, C.J., Dykes, R., Kehrl, L.M., Townend, J., 2015. Glacier velocity variability due to rain-induced sliding and cavity formation. Earth and Planetary Science Letters 432, 273–282. doi:10.1016/j.epsl.2015.10.016

Kehrl, L.M., Horgan, H.J., Anderson, B.M., Dadic, R., Mackintosh, A.N., 2015. Glacier velocity and water input variability in a maritime environment: Franz Josef Glacier, New Zealand. Journal of Glaciology 61, 663–674. doi:10.3189/2015JoG14J228

Koch, I., Fitzsimons, S., Samyn, D., Tison, J.-L., 2015. Marine ice recycling at the southern McMurdo Ice Shelf, Antarctica. Journal of Glaciology 61, 689–701. doi:10.3189/2015JoG14J095

McColl, S.T., Fuller, I.C., 2015. Exploring the implications of advance and retreat of a New Zealand icon: Fox Glacier 2005–2015 and beyond. N Z Geog 71, 110–112. doi:10.1111/nzg.12085

Picotti, S., Vuan, A., Carcione, J.M., Horgan, H.J., Anandakrishnan, S., 2015. Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data. J. Geophys. Res. Solid Earth 2014JB011591. doi:10.1002/2014JB011591

Price, D., Beckers, J., Ricker, R., Kurtz, N., Rack, W., Haas, C., Helm, V., Hendricks, S., Leonard, G., Langhorne, P.J., 2015. Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica. Journal of Glaciology 61, 285–300. doi:10.3189/2015JoG14J157

Purdie, H., Gomez, C., Espiner, S., 2015. Glacier recession and the changing rockfall hazard: Implications for glacier tourism. New Zealand Geographer online.

Purdie, H., Rack, W., Anderson, B., Kerr, T., Chinn, T., Owens, I., Linton, M., 2015. The Impact Of Extreme Summer Melt on Net Accumulation of an Avalanche Fed Glacier, as Determined by Ground-Penetrating Radar. Geografiska Annaler: Series A, Physical Geography 97, 779–791. doi:10.1111/geoa.12117

Rother, H., Shulmeister, J., Fink, D., Alexander, D., Bell, D., 2015. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance. Earth and Planetary Science Letters 429, 69–81. doi:10.1016/j.epsl.2015.07.033

Sinclair, K.E., MacDonell, S., 2015. Seasonal evolution of penitente glaciochemistry at Tapado Glacier, northern Chile. Hydrol. Process. n/a–n/a. doi:10.1002/hyp.10531

Slee, A., Shulmeister, J., 2015. The distribution and climatic implications of periglacial landforms in eastern Australia. J. Quaternary Sci. 30, 848–858. doi:10.1002/jqs.2823

Toyota, T., Kohout, A., Fraser, A.D., n.d. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography. doi:10.1016/j.dsr2.2015.10.003

Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S.U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A.P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L.N., Cáceres, B.E., Casassa, G., Cobos, G., Dávila, L.R., Delgado Granados, H., Demuth, M.N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J.O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V.V., Portocarrero, C.A., Prinz, R., Sangewar, C.V., Severskiy, I., Sigurðsson, O., Soruco, A., Usubaliev, R., Vincent, C., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61, 745–762. doi:10.3189/2015JoG15J017


Anderson, B., Willis, I., Goodsell, B., Banwell, A., Owens, I., Mackintosh, A., Lawson, W., 2014. Annual to Daily Ice Velocity and Water Pressure Variations on Ka Roimata o Hine Hukatere (Franz Josef Glacier), New Zealand. Arctic, Antarctic, and Alpine Research 46, 919–932. doi:10.1657/1938-4246-46.4.919

Barrell, D.J., 2014. The Balmoral moraines near Lake Pukaki, Southern Alps: a new reference area for the early Otira Glaciation in New Zealand. New Zealand Journal of Geology and Geophysics 1–11. doi:10.1080/00288306.2014.936473

Trevor J. Chinn, Jeffrey S. Kargel, Gregory J. Leonard, Umesh K. Haritashya, Mark Pleasants, 2014. New Zealand’s glaciers, in: Jeffrey S. Kargel, Gregory J. Leonard, Michael P. Bishop, Andreas Kaab, Bruce H., R. (Eds.), Global Land Ice Measurements from Space. Springer, Berlin, pp. 675–715.

Cullen, N.J., Mölg, T., Conway, J., Steffen, K., 2014. Assessing the role of sublimation in the dry snow zone of the Greenland ice sheet in a warming world. Journal of Geophysical Research: Atmospheres 2014JD021557. doi:10.1002/2014JD021557

Gessese, A., Heining, C., Sellier, M., Mc Nish, R., Rack, W., n.d. Direct reconstruction of glacier bedrock from known free surface data using the one-dimensional shallow ice approximation. Geomorphology. doi:10.1016/j.geomorph.2014.09.015

Golledge, N.R., Marsh, O.J., Rack, W., Braaten, D., Jones, 2014. Basal conditions of two Transantarctic Mountains outlet glaciers from observation-constrained diagnostic modelling. Journal of Glaciology 60, 855–866. doi:10.3189/2014JoG13J131

Hagg, W., Brook, M., Mayer, C., Winkler, S., 2014. A short-term field experiment on sub-debris melt at the highly maritime Franz Josef Glacier, Southern Alps, New Zealand. Journal of Hydrology (NZ) 52, 157–165.

Hendrikx J., Harper A., 2014. Development of a National Snow and Ice Monitoring Network for New Zealand. Journal of Hydrology (NZ) 52, 83–95.

Hughes, K.G., Langhorne, P.J., Leonard, G.H., Stevens, C.L.., 2014. Extension of an Ice Shelf Water plume model beneath sea ice with application in McMurdo Sound, Antarctica. Journal of Geophysical Research: Oceans 2169-9291. doi:10.1002/2013JC009411

Joy, K., Fink, D., Storey, B., Atkins, C., 2014. A 2 million year glacial chronology of the Hatherton Glacier, Antarctica and implications for the size of the East Antarctic Ice Sheet at the Last Glacial Maximum. Quaternary Science Reviews 83, 46–57. doi:10.1016/j.quascirev.2013.10.028

Kelley, S.E., Kaplan, M.R., Schaefer, J.M., Andersen, B.G., Barrell, D.J.A., Putnam, A.E., Denton, G.H., Schwartz, R., Finkel, R.C., Doughty, A.M., 2014. High-precision 10Be chronology of moraines in the Southern Alps indicates synchronous cooling in Antarctica and New Zealand 42,000 years ago. Earth and Planetary Science Letters 405, 194–206. doi:10.1016/j.epsl.2014.07.031

Kohout, A.L., Williams, M.J.M., Dean, S.M., Meylan, M.H., 2014. Storm-induced sea-ice breakup and the implications for ice extent. Nature 509, 604–607.

Oliver J. Marsh, Wolfgang Rack, Nicholas R. Golledge, Wendy Lawson, Dana Floricioiu, 2014. Grounding-zone ice thickness from InSAR: inverse modelling of tidal elastic bending. Journal of Glaciology 60, 526–536.

Price, D., Rack, W., Langhorne, P.J., Haas, C., Leonard, G., Barnsdale, K., 2014. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice. The Cryosphere Discuss. 8, 999–1022. doi:10.5194/tcd-8-999-2014

Rowan, A.V., Brocklehurst, S.H., Schultz, D.M., Plummer, M.A., Anderson, L.S., Glasser, N.F., 2014. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand. J. Geophys. Res. Earth Surf. 119, 2013JF003009. doi:10.1002/2013JF003009

Salinger, M., Shrestha, M., Ailikun, Dong, W., McGregor, J., Wang, S., 2014. Climate in Asia and the Pacific: Climate Variability and Change, in: Manton, M., Stevenson, L.A. (Eds.), Climate in Asia and the Pacific, Advances in Global Change Research. Springer Netherlands, pp. 17–57.

Sirguey, P., Cullen, N.J., Jorge Filipe Dos Santos, 2014. The new Digital Orthometric Elevation Model of Kilimanjaro, in: Stephan Winter, Chris Rizos (Eds.), Proceedings of Research at Locate’14 (R@Loc-2014), Canberra, Australia, April 7-9, 2014., CEUR Workshop Proceedings. Presented at the Research at Locate’14, Canberra, Australia, pp. 108–117.

Stevens, C.L., McPhee, M.G., Forrest, A.L., Leonard, G.H., Stanton, T., Haskell, T.G., 2014. The influence of an Antarctic glacier tongue on near-field ocean circulation and mixing. Journal of Geophysical Research: Oceans n/a–n/a. doi:10.1002/2013JC009070

Webster, C.S., Kingston, D.G., Kerr, T., 2014. Inter-annual variation in the topographic controls on catchment-scale snow distribution in a maritime alpine catchment, New Zealand. Hydrological Processes n/a–n/a. doi:10.1002/hyp.10224

Wilson, J., Espiner, S., Stewart, E., Purdie, H., 2014. “Last Chance Tourism” at the Franz Josef and Fox Glaciers, Westland Tai Poutini National Park: A survey of visitor experience (Land Environment and People Research Report No. N0 33). Lincoln University, Lincoln.

Willsman, A.P., Chinn, T., Lorrey, A., 2014. New Zealand glacier monitoring: end of summer snowline survey 2013. CHC2014-022 NIWA, Christchurch.

Winkler, S., 2014. Investigation of late-Holocene moraines in the western Southern Alps, New Zealand, applying Schmidt-hammer exposure-age dating. The Holocene 24, 48–66.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s